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I. Second-order gravitatiorlal
Lagr angi an de comp o s i tion f

The theory ofgra
tions. has important implications in th
contemporary infl ationary universe sce

The old. fundametttal theory o

DeWitt [3-6], provides the general theoretical background f{r the definition of
the S-matrix, the effective action and etc. - all of them relatitfe to a background
field. This field was not specified, but most important, it was {ssumed to be fixed
and asymptotically flat. As Bryce Dewitt himself remarks in fris well-known pa-
per [3], "the extension of the theory to worlds in which spaceitirne is not asyrnp-
totically flat remains a program for the future'. Later on. tlie necessity to con-
struct a gauge invariant effective action, based on the loop expansion [7] and the
inclusion of ficticious particle loops [8, 9] lead to an inlvestigation of the
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perturbative gravitational Lagrangian structure. In this L[grangian the metric is
decomposed into a flat background metric, denoted by 6u" ( 6 the a-dimen-
sional Kroneker symbol) and also a fluctuating metric i u" , idintified with the

Again, the assumption about a flat background nl,retric is a very c;onven-

fflg:j::ilI;:u"rn 
the invariance of the mr:tric under an infinitesimat gauge

graviton field [9]:

(l) d'u = 6uu + Il'u .

lF = f +€u(x)

one can compute also the induced change in the gra h" [g].
Further, th€ necessity to investigate the one-loop

lar field when the gravitational field is treated as an exte

field

(2\

the motivatio,n for decomposing the gravitational
on an arbitrary (non-flat) background. However, the

ies of the sca-
field [0], provided

to second order
ition turned out

to be rather cumbersome and inconvenient to deal with [i0, I l].
In a more concise and compact manner, the pert{rrbed to second order

L.agrangian was derived in [12] by using covariant deriv{tives in respect to the
background rnetric. As is well known [13], the notioDacKground rnetrrc. As rs well known [13], the notio
implies an important physical meaning, related to t
under an infinitesimal parallel transport along a giv
to write down only the gravitationalpart of the qua
stein-Maxwell fields), derived in Il 2]:

,,\ ldo x1;,-syil- +(o"n,r)r"u*(o" n*) *+(,r, -i r,o)'
(3) L

+ ! n"u(x , * t, )"u* ]

nt derivative and I 
o9* , X anrJ, X,

y of background fidlds. In spite of the ule

the quantized (perturbed) fields are tr
striction that the variational derivative
background (classical) fields and metr
fact coefficient functions (in front of i) in the first-ordpr perturbed gravita-
tional Lagrangian Lt and the performed expansion 6e{tuiuation) is around



I

the fixed background metric, the assumption is equivalent td vanishing of Zr.
As will be seen further, such an assumption will no longer tlold in this paper.
bacause it will be proved that Lr enters also in the expressipn for the second
order perturbed gravitational Lagrangian Lz and therefore it has to be taken
into account.

It is obvious also from expression (3) that the gravitqn propagator will
no longer have the simple form (in momentum space): 

i

(4) Ar.r,(p)= f 1u"^upu 
r 6ou6p^ - s*6^u)

derived in [8], but will have a more complex structure. Indeed, jthe need to inves-
tigate the effect of the gravitational perturbations and of the jgraviton creation
rate in the in flationary universe scenario raised the important problem to find
the graviton propagator (derived from second-order perturbatiire theory) in some
real cos er of publications dealsiwith the probtem
of findi homogeneous and isoiropic spacetimes
[14], in mes [5] and especiall] in the de-Sitter
spacetime il6-181. For example. in [9]the gravitorr propagatirr in the de-Sitter
spacetime has been found to be divergent. However. the graViton propagator
has not yet been found for other types of background fields, which are neither

he reason is that the quidratic part ofthe
has not been yet investigated in details.
his subject remains the paper of Barneby

[20], where the formalism of covariant differentiation was suqcessfully applied.
However. it is the putpose of this paper to find the most generbl structure of the
second-order Lagrangian and afterwards (in the next papers) the graviton propa-
gator itsolf. It will he proved in the fo iftportant terms in
the second-order Lagrangian and in vp been omitted in
[20], which makes the investigation i 

i

Basic assumptions and second-ordgr gravitational
Lagrangian decomposition 

i

tional Lagrangian:
Our aim in this section will be to deconrlpose the gravita-

(-5) t= -GR= -,[Ed, q, = -Gd' K,,

, corresponding tp the background
e gravitational fiild - Lt andto the
(5) r(,, is the Riqmann tensor and

by the metric tensor f-,, which is split



(6)

into a background paft Ef,) and a fluctuating part d"

gu,=drl,'+hr,'

dP = dotru _lrtrtt a41ra1

The above formulae should satisfv the relation:

gr,,,d'P = 5f,

formulae:

(e) 4" = a"f,l" _ d,fft + f_i"fl" _ f,i"rl"

the Levi-Civita (symmetric) affine connection f,i (with { minus sign):

(10) r,li, = -*a""(ru*" t 6,gt,- 4"g,,),

has to be decrcmposed first. The assumption tnrat formulde (10) is valid for the

It should be emphasizedthat (6) is not an expa]nsion around a back-
ground geornetry, hut represents a fluct
on a curved background geometry. Thi
cation, because the fluctuating field m
pendent, but the background field may
a real cosmological spacetime-a de-Sit
perform the decomposition (5) according to (6), an invdrse metric 4/,u to sec-
ond-order is defined as follows:

(7)

(8)

to second-order in 4,u, unlike the definition in [20], whe{e the inverse metric is
defined only to first-order. It is also assumed that an invelse background metric
dllt"' "*ittu 

and all indices are raised and lower-ed with the background metric
g[] and do,u'. Since the Riemann tensor 4-" i, given by the well-known

total affine co,nnection fff, is equivalent to the assumption that the total metric
is a Riemannian one. i.e.

(l l) 91,,;o = a ogr, + f,i" g^, * fjug,,u = o,

;ffiT i3;H::*l' fl* ;l*:l it"#:
0) and (l l) are $quivalent and fotlow
tion can be madg that the background



metric is also a Remannian one:

(12) l?, = a"d,Y * rll)'sli) + rii)'s{'/ = o

quences for this theory. By using (10) and (6) the total Levi - Fivita connection
can be decomposed into:

(13) r,l" =r,13)" * 4J" * 4,)"

where the symbol I denotes a covariant derivative with respect tb the background

affine connection f,l|)". Since the background metric is a real cofmological metric
and all of them are Riemannian, this is a natural assumption. .d,s will be shown
in the following papers, the assumptions (ll) and (12) will havi profound conse-

*tt.r" f,!3)" is the usual background affrne connection una ]{,11" uno {])"
are the first and the second fluctuation connections respectivfly, given by the
expressions, 

i

(r4) 4?" = ;a""(a,,dlr + a,{,1) - a"A'J) - + lt""(a ph" +ia,hv" - a 
"4,),

I{)" = ! h*(a rh,, + o,hr,- 4"4,") * 4,'"

4?,' =-!rqn"p*d,? * a"3f) -a"dry 1= rr"l',h,!|)".

in fact the contribution from the nfodified (with the
In (16) the expression: 

i

(17) A*do)+ a"g{"q - a"

has been used, which can be obtained
g!9). from the affine connection form
tensor (9) it can be obtained that: i

4"" = 4?,1 * 4,1f .4,?,1

background Riemann tensor *d 4ll "44fluctuation Riemann tensors respectively: 
I

(re) 4ll9 = a"Alu - a"4!u* 4l,rj:,u * 4lurly, - 1#urj3,'
- 4lorll'u,

(t s)

where
(16)

The last formulae is
term fth"g inverse metric.

( l8)

wrrere ^(,1)i is the
first artd the second

4?i are the



The tensor {,i)rl is the same in structure as thJ tensor {,lf , uut wittr

fdlF lformulae 15) instead of 4]u (formutae l4). The same refers also for the

tensor 4,1),1, outuined from 413 uv repracing ail tensprs ,i]p with dJp.
Using (19) and (16), the tensor .{l,j can be written as:

(2r) 
4,',,,1 = 4"'lu * l"1",(r,ll]f - rJ:il)+ z(rjp'{)n - pro)o;{o)n)

where 4-'f ir, as will be proved later, a tensor quantity:]

(22) 4"'ll =(a",a"),"rjl"t, -(h",ho),"[j9t.

In (21) and (22)the usual symbol for I 
been

replaced by a commd ",". Finally, in ord onal
Lagrangian decomposition, we need also the ition
ot rls 

'

(23t G =G"'(r +in-[nir; *+l')
i

yhele 4= tt.Substituting all expressions (7)" (18) - (22)]into (5) and represent-
ing the Lagrangian as: 

1

(24, L=-In- L- L ]

4?.1 = 4,",,1 .4,?,1

q = J {'| do'u"4,1',: ,

L, = ! hL, * J s, (sr')*Rlf -

we obtain that

(2s)

(26)

(27)

ir**ll'; ).

4 = [(n2 - ni n;)4 + ! nt, * JF (n;,r*nll,; - r'l*lf * s(o)"",rlly).



Discussion

In this paper we have decomposed to sepond order the to-

talChristoffel connection form f,i of t
l6) and also the total gravitational La
the second-order Lagrangian (27) is ex

order Lagrangian Irr Q5) and \(26i).
through lo. I

In paper II it w ing Levi -lCivita connection

43" tr+l is a tensor on 4t"'ultts -,to) is not a
tensor. However, it wil gle out fr$m ,{,i'" a tensor

and a non-tensor part and to express the tensor part throulh the connection43". i' This is an important fact since perturbative quanturh gravity deals ex-

clusively with tensor quantities. 
i
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Brpxy reopnrra Ha repryp6a,ipnnnara
rpaBnTarlufl n KBaHTOBaTa rp{nuraq uf,, Ha
r{3r(pr{BeH ooH. 

i

I. PagraraHe Ha rpaBnrarlnonrfna JlarpaxuaH
AO BTOpr{ noprAbK I

Bor4an r{uunrpon 
]

I(Perorue) 
i

B raru nrpBa pa6ora or cepur ft "r*on*o 
pa6orn

craHAaprHHrr rpaBnraquoHeH Jlarpaxran e pa3noxeH do nropn nopr.ulK no
orHoueH[e Ha nepryp6aqnr.r Ha rpaBfiTaqHoHHOTO !One. Hanpaneno e
pa3narafieAoBTOpn nopsAtt( cbtrlo l{ Ha cBrp3aHosrra, u lrarenropa ua puuan.

B pa6orara e ycraHoBeHo, ve Jlarpax'aHrr ot 
"rop, 

noprArK ce
n3pa3flBa uper JlarpaxHaHa or nrpBfi noprAbt( H To3H H{ 6OHOTOTO noJre.
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I

I

I
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