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Introduction and motivation for this research |

The theory of gravitons-quantized gravitational perturba-
tions. has important implications in the present wormhole theory [1] and in the |
contemporary inflationary universe scenario [2]. -J

The old. fundamental theory of quantum gravity, developed by Bryce |
Dewitt [3-6], provides the general theoretical background for the definition of |
the S-matrix, the effective action and etc. - all of them relative to a background |
field. This field was not specified, but most important, it was zissumed to be fixed |
and asymptotically flat. As Bryce Dewitt himself remarks in his well-known pa- |
per [3], “the extension of the theory to worlds in which spacettime is not asymp- ?
totically flat remains a program for the future’. Later on, the necessity to con- 5
struct a gauge invariant effective action, based on the icop exﬁpansion [7land the '
inclusion of ficticious particle loops [8, 9] lead to an investigation of the|
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perturbative gravitational Lagrangian structure. In this Lagrangian the metric is
decomposed into a flat background metric, denoted by & (g the p-dimen-
sional Kroneker symbol) and also a fluctuating metric / . , identified with the
graviton field [9]:

(1) 2= 4

Again, the assumption about a flat background metric is a Very conven-
ient one because from the invariance of the metric under an infinitesimal gauge
transformation:

@ X% = L EN( )

one can compute also the induced change in the graviton field £ [9].

Further, the necessity to investigate the one-loop divergencies of the sca-
lar field when the gravitational field is treated as an external field [10], provided
the motivation for decomposing the gravitational Lagrangian to second order
on an arbitrary (non-flat) background. However, the decomposition turned out
to be rather cumbersome and inconvenient to deal with [10, 11].

In a more concise and compact manner, the perturbed to second order
Lagrangian was derived in [12] by using covariant derivatives in respect to the
background metric. As is well known [13), the notion of a covariant derivative
implies an important physical meaning, related to the change of a tensor field
under an infinitesimal parallel transport along a given contour. It is instructive
to write down only the gravitational part of the quadratic Lagrangian (for Ein-
stein-Maxwell fields), derived in [12);
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where the symbot D denotes a covariant derivative and P “**°, X and X,

are fourth-rank tensors, composed only of background fields. In spite of the use
of an arbitrary background metric, an assumption was made in [12], that only
the quantized (perturbed) fields are treated dynamically. This imposes the re-
striction that the variational derivatives of the Lagrangian with respect to the
background (classical) fields and metric vanish. Since these derivatives are in
fact coefficient functions (in front of A) in the first-order perturbed gravita-
tional Lagrangian L: and the performed expansion (perturbation) is around



the fixed background metric, the assumption is equivalent to vanishing of Li.
As will be seen further, such an assumption will no longer hold in this paper,
bacause it will be proved that L, enters also in the expression for the second
order perturbed gravitational Lagrangian L, and therefore it has to be taken
into account.

It is obvious also from expression (3) that the graviton propagator will
no longer have the simple form (in momentum space):

(4) ﬂ]}ln(p) 20 (8 8p, +0,,0p Suﬁaln)

derived in [8], but will have a more complex structure. Indeed, |the need to inves-
tigate the effect of the gravitational perturbations and of the graviton creation
rate in the in flationary universe scenario raised the important problem to find

the graviton propagator (derived from second-order perturbative theory) in some |

real cosmological spacetimes. A number of publications deals,with the problem
of finding the graviton propagator in homogeneous and isotropic spacetimes
(14], in maximally symmetric spacetimes (15] and especially in the de-Sitter
spacetime [16-18). For example. in [19] the graviton propagator in the de-Sitter

spacetime has been found to be divergent. However, the graviton propagator |

has not yet been found for other types of background fields, which are neither
highly symmetric, nor homogeneous. The reason is that the quadratic part of the
perturbative gravitational Lagrangian has not been yet investigated in details,

Perhaps the most serious treatment of this subject remains the paper of Barneby
(20}, where the formalism of covariant differentiation was successfully applied.

However, it is the purpose of this paper to find the most general structure of the
second-order Lagrangian and afterwards (in the next papers) tHe graviton propa-
gator itself. It will be proved in the following paper that some important terms in
the second-order Lagrangian and in the Riemann tensor have been omitted in
[20], which makes the investigation in this paper incomplete. -

Basic assumptions and second- order gravitational
Lagrangian decomposition

QOur aim in this section will be to decom;posc the gravita-
tional Lagrangian:

(5) L=-JgR=-/gg"R, =-Jgg" R,

and to single out those parts of the Lagrangian, corresponding to the background
field Lo , to the first-order perturbation of the gravitational fi ¢ld - Ly and to the
second-order perturbation - L;. Note that in (5) ﬁ“fw is the qurnann tensor and

the geometry of space-time is described by the metric tensor £,, , which is split



into a background part gff,) and a fluctuating part &,

(6) g;.w = p(:'} ke bp\' *

It should be emphasized that (6) is not an expansion around a back-
ground geometry, but represents a fluctuating gravitational field, superimposed
on a curved background geometry. This fact has a profound cosmological impli-
cation, because the fluctuating field may be assumed to be space and time de-
pendent, but the background field may be only time-dependent. It may describe
a real cosmological spacetime-a de-Sitter spacetime for example. In order to
perform the decomposition (5) according to (6), an inverse metric g to sec-
ond-order is defined as follows:

D gnli e g(O)pfi ~ B8y b:huﬂ j
The above formulae should satisfy the relation;

N g,8"=8"

to second-order in A, unlike the definition in [20], where the inverse metric is
defined only to first-order. It is also assumed that an inverse background metric
2 exists and all indices are raised and lowered with the background metric

n?,} and g% Since the Riemann tensor Rfm. is given by the well-known
formulae:

) R,.=8I —ort +rort et
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the Levi-Civita (symmetric) affine connection I'%, (with a minus sign):

ey

-1 £(0,£.,+0,8,-.8,,).

has to be decomposed first. The assumption that formulae (10} is valid for the
total affine connection ', is equivalent to the assumpticn that the total metric
is a Riemannian one, i.e.

(10) e

(I I) gp.v',u = 8ag].w L r;:-agn: i3 I_‘t;;;gr!.tv =0 :

In other words, the covariant derivative (denoted by the symbol :) of the
tensor field g, with respect to the total affine connection 1"1?\, is zero. In fact ,
it can easily be proved that formulaes (10) and (11) are ¢quivalent and follow
from one another. Of course, an assumption can be made that the background



metric is also a Remannian one;

(12) =0, 80 +T gy + T g =0

where the symbol | denotes a covariant derivative with respect to the background

affine connection I"i?f“ . Since the background metric is a real cosmological metric
and all of them are Riemannian, this is a uatural assumption. As will be shown
in the following papers, the assumptions (11) and (12} will havq', profound conse-
quences for this theory. By using {10) and (6) the total Levi - Civita connection
can be decomposed into:

(13) r:v =I—~$}a+foi}a +H$)“

where I“{{’)“ is the usual background affine connection and IW”“ and H‘”“
are the first and the second fluctuation connections respectwﬂy, given by the
expressions:

14y H =357(0,80 + 0,89 -0,49)-+ £7(0,4,+0,b,~0,8,),
(15) HY =118, 4, + 0,4, - 8.4, )+ DI
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The last formulae is in fact the contribution from the n}odiﬁed {with the
term A'A™ inverse metric. In (16) the expression: '

(17) 8.80 +8,8Y -0.8) =201

has been used, which can be obtained from (10) by multiplying both sides with
gbé . From the affine connection formulae decomposition (13) and the Riemann
tensor (9) it can be obtained that:

{18) = ﬂlﬁ_i_ gx‘)ﬁ + 2)5

where Jﬁw = s
first and the second fluctuation Riemann tensors respcctwely

(19) R =0, HUP - o HOP 4 HOPLOP 4 HORTOR }%{11}31—{0}9
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; s !
9 is the background Riemann tensor and u arld 28 are the



(20) o8 COP 4 S5
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The tensor €12 is the same in structure as the tensor R but with
H::,m {formulae 15) instead of H:IL}B {formulae 14). The same refers also for the
tensor .Sﬁ‘f, obtained from i{’:f by replacing all tensors HL?B with dpf,}ﬁ.

Using (19) and (16), the tensor .Sg’f can be written as:

@) SOP= FOP 4+ 4R, (T8 - TIOF) 1 o0 _ poeron)

v HOo.v v

where Fi2P is, as will be proved later, a tensor quantity:
) Filis (b,,b")‘a LR —(,47) Ti00,

In (21) and (22) the usual symbol for a partial derivative * 5" h.as been
replaced by a comma “,". Finally, in order to perform the gravitational
Lagj@gian decomposition, we need also the expression for the decomposition
of Jg:

% Ve =g (1+30-181 +117)

where A= /; Substituting all expressions (7). (18) - (22) into (5) and represent-
ing the Lagrangian as: :

— Le~ly= L1,
we obtain that

(25) L= / 29 g gl

(26) L[ = %—f}Lo + Jgfo) (g[ﬂ}m’R:tB:-t _ibinflgLﬂ ) )
27

Ly = 4{B = BB )L, + 4 AL, + g™ (B2 1 RO B RUS + g R,
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Discussion

In this paper we have decomposed to second order the to-
tal Christoffel connection form I';, of the Riemann metric g, (formulaes 13 -
16} and also the total gravitational Lagrangian (formulaes 24 - 27). Note that
the second-order Lagrangian (27) is expressed through the preceeding lower-
order Lagrangian L, (25) and L (26). Also, the Lagrangian L, is expressed
through 7.

In paper I it will be proved that the fluctuating Levi -ICivita connection
H;(I”“ (14) is a tensor quantity, while the connection Hﬁ)“! (15 - 16) is not a

v
tensor. However, it will turn out to be possible to single out fr¢m Hﬁ'“ a tensor

and}a non-tensor part and to express the tensor part through the connection
1}a I
This ts an important fact since perturbative quantum gravity deals ex-
clusively with tensor quantities.
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Bwpxy Teopusra Ha nepTypGaTHBHATA
FPaBUTALMA H KBAHTOBATA ['PABHTAIIUS HA

. M3KpHBEH ¢oH.
I.Pasnarane na rpasutausonting Jlarpaxuan
RO BTOPH NMOPAIXLK | '

borgan Jumurpos

(PezromMe)

B rasu nbpBa paboTa OT cepus 1'31' HAKonko paboTn

CTaHAAPTHHUAT IPABHTALUOHER JIarpaxuaH € pasnoxed 40 BTODH NOPAALK Mo

OTHOUIeHWE HA NEpPTYPOALNK Ha rpaBMTAUHOHHOTO nose. Hanpasero e

Pa3AaraHe 1o BTOPK BOPAALK CHLIO M Ha CBLP3AHOCTTA, M {1a TeH30pa Ha Puman.

B pabortarta ¢ ycraHoBeHo, ye JIarpaxxuaHbvT OFf BTOPHM NOPAIDK ce
H3pa3naBa upes Jlarpaxuana oT MbpBH NOPAXLK 1 TO3M HA POHOBOTO MOTE.
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